大家好,关于时间复杂度计算的例题很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于数据结构时间复杂度怎么计算的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
一、时间复杂度的计算。
一般来说,时间复杂度是总运算次数表达式中受n的变化影响更大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a<>0时,时间复杂度就是O(2^n);
a,b=0,c<>0=>O(n^2)依此类推
那么,总运算次数又是如何计算出的呢?
一般来说,我们经常使用for循环,就像刚才五个题,我们就以它们为例
2.循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
3.循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
5.循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
如果还不明白就在 *** 上说吧,786453572
二、算法的时间复杂度如何计算
1、求解算法的时间复杂度的具体步骤是:
2、算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
3、⑵计算基本语句的执行次数的数量级;
4、只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的更高次幂正确即可,可以忽略所有低次幂和更高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
5、⑶用大Ο记号表示算法的时间性能。
6、将基本语句执行次数的数量级放入大Ο记号中。
7、如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
8、之一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
9、常见的算法时间复杂度由小到大依次为:
10、Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
11、Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
12、这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
13、参考博客地址:
三、时间复杂度怎么算例题
这是一个简单的"累乘"问题,用递归算法也能解决。
fact(3)-----fact(2)-----fact(1)------fact(2)-----fact(3)
递归算法在运行中不断调用自身降低规模的过程,当规模降为1,即递归到fact(1)时,满足停止条件停止递归,开始回溯(返回调用算法)并计算,从fact(1)=1计算返回到fact(2);计算2*fact(1)=2返回到fact(3);计算3*fact(2)=6,结束递归。
每一次递归调用,都用一个特殊的数据结构"栈"记录当前算法的执行状态,特别地设置地址栈,用来记录当前算法的执行位置,以备回溯时正常返回。递归模块的形式参数是普通变量,每次递归调用得到的值都是不同的,他们也是由"栈"来存储。
一般递归调用有以下几种形式(其中a1、a2、b1、b2、k1、k2为常数)。
<1>直接简单递归调用:f(n){...a1*f((n-k1)/b1);...};
<2>直接复杂递归调用:f(n){...a1*f((n-k1)/b1);a2*f((n-k2)/b2);...};
<3>间接递归调用:f(n){...a1*f((n-k1)/b1);...},
g(n){...a2*f((n-k2)/b2);...}。
递归算法的分析 *** 比较多,最常用的便是迭代法。
迭代法的基本步骤是先将递归算法简化为对应的递归方程,然后通过反复迭代,将递归方程的右端变换成一个级数,最后求级数的和,再估计和的渐进阶。
算法的递归方程为:T(n)=T(n-1)+O(1);
这个例子的时间复杂性是线性的。
T(n)=2T(n/2)+2,且假设n=2的k次方。
=2的(k-1)次方*T(n/2的(i-1)次方)+$(i:1~(k-1))2的i次方
这个例子的时间复杂性也是线性的。
T(n)=2T(n/2)+O(n),且假设n=2的k次方。
一般地,当递归方程为T(n)=aT(n/c)+O(n),T(n)的解为:
O(nlog2n)(a=c&&c>1)//以2为底
O(nlogca)(a>c&&c>1)//n的(logca)次方,以c为底
上面介绍的3种递归调用形式,比较常用的是之一种情况,第二种形式也有时出现,而第三种形式(间接递归调用)使用的较少,且算法分析
比较复杂。下面举个第二种形式的递归调用例子。
<4>递归方程为:T(n)=T(n/3)+T(2n/3)+n
为了更好的理解,先画出递归过程相应的递归树:
...............................
累计递归树各层的非递归项的值,每一层和都等于n,从根到叶的最长路径是:
n-->(2/3)n-->(4/9)n-->(12/27)n-->...-->1
于是T(n)<=(K+1)*n=n(log(2/3)n+1)
由此例子表明,对于第二种递归形式调用,借助于递归树,用迭代法进行算法分析是简单易行的。
四、时间复杂度的计算
求解算法的时间复杂度的具体步骤是: 1、找出算法中的基本语句:算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 2、计算基本语句的执行次数的数量级:(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的更高次幂正确即可,可以忽略所有低次幂和更高次幂的系数。(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 3、用大Ο记号表示算法的时间性能:(1)将基本语句执行次数的数量级放入大Ο记号中。(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++) for(j=1;j<=n;j++)x++;(3)之一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
五、时间复杂度(计算 *** ,如果计算,及其解释)
时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。
一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,在找出T(n)的同数量级(它的同数量级有以下:1,Log2n
,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
n的平方+n的三次方,根据上面空号里的同数量级,我们可以确定
n的三次方,然后根据T(n)/f(n)求极限可得到常数c
好了,文章到这里就结束啦,如果本次分享的时间复杂度计算的例题和数据结构时间复杂度怎么计算问题对您有所帮助,还望关注下本站哦!